Sarya Demir Logo
Sarya DemirData Science & AI
Home
BlogAbout
Mathematics

Mathematics

Statistical theory and mathematical foundations for Data Science

Core Topics

Linear Algebra

Matrices, vectors, eigenvalues, and their applications in ML

  • • Matrix Operations
  • • Vector Spaces
  • • Eigendecomposition

Calculus

Derivatives, integrals, and optimization techniques

  • • Differentiation
  • • Integration
  • • Optimization

Statistics

Probability theory and statistical inference

  • • Probability
  • • Hypothesis Testing
  • • Distributions

Probability

Random variables, distributions, and probabilistic modeling

  • • Random Variables
  • • Distributions
  • • Bayes Theorem

Optimization

Mathematical optimization methods for machine learning

  • • Gradient Descent
  • • Convex Optimization
  • • Lagrange Multipliers

Numerical Methods

Computational approaches to mathematical problems

  • • Numerical Integration
  • • Root Finding
  • • Interpolation

Interactive Examples

Linear Regression Mathematics

Explore the mathematical foundations of linear regression

Intermediate30 minutes

Principal Component Analysis

Understanding the mathematics behind PCA

Advanced45 minutes