Probability Theory

Understanding uncertainty and random phenomena through mathematical analysis

Foundations of Probability

Probability theory provides the mathematical framework for analyzing random phenomena, making decisions under uncertainty, and understanding statistical inference.

Core Probability Concepts

Basic Probability

Basic Probability
  • Sample Spaces and Events
  • Probability Axioms
  • Conditional Probability

Random Variables

Random Variables
  • Discrete vs Continuous
  • Expected Value
  • Variance and Moments

Probability with Python

import numpy as np
from scipy import stats
import matplotlib.pyplot as plt

# Generate random data
n_samples = 1000
data = np.random.normal(loc=0, scale=1, size=n_samples)

# Calculate probability density
density = stats.gaussian_kde(data)
x_range = np.linspace(min(data), max(data), 200)
y = density(x_range)

# Plot probability density
plt.figure(figsize=(10, 6))
plt.hist(data, bins=30, density=True, alpha=0.7, color='blue')
plt.plot(x_range, y, 'r-', lw=2, label='KDE')
plt.title('Probability Density Estimation')
plt.xlabel('Value')
plt.ylabel('Density')
plt.legend()
plt.grid(True, alpha=0.3)
plt.show()

# Calculate probabilities
prob_less_than_1 = stats.norm.cdf(1, loc=0, scale=1)
prob_greater_than_2 = 1 - stats.norm.cdf(2, loc=0, scale=1)

print(f"P(X < 1) = {prob_less_than_1:.3f}")
print(f"P(X > 2) = {prob_greater_than_2:.3f}")

Advanced Topics

Stochastic Processes

Stochastic Processes
  • • Markov Chains
  • • Poisson Processes
  • • Brownian Motion

Bayesian Inference

Bayesian Inference
  • • Prior and Posterior
  • • Conjugate Priors
  • • MCMC Methods