Numerical Methods

Computational techniques for solving mathematical problems

Numerical Analysis Fundamentals

Numerical methods provide algorithms for solving mathematical problems that typically cannot be solved analytically, especially in real-world applications.

Core Numerical Methods

Root Finding

Root Finding Methods
  • Bisection Method
  • Newton's Method
  • Secant Method

Numerical Integration

Numerical Integration
  • Trapezoidal Rule
  • Simpson's Rule
  • Gaussian Quadrature

Numerical Methods with Python

import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt

# Define function
def f(x):
    return np.sin(x) * np.exp(-x/3)

# Integration range
a, b = 0, 10
x = np.linspace(a, b, 100)

# Numerical integration methods
trap_result = integrate.trapz(f(x), x)
simps_result = integrate.simps(f(x), x)
quad_result, _ = integrate.quad(f, a, b)

# Visualization
plt.figure(figsize=(12, 6))
plt.plot(x, f(x), 'b-', label='f(x)')
plt.fill_between(x, f(x), alpha=0.3)
plt.grid(True, alpha=0.3)
plt.legend()
plt.title('Numerical Integration Example')
plt.xlabel('x')
plt.ylabel('f(x)')
plt.show()

print("Integration Results:")
print(f"Trapezoidal Rule: {trap_result:.6f}")
print(f"Simpson's Rule: {simps_result:.6f}")
print(f"Gaussian Quadrature: {quad_result:.6f}")

Advanced Numerical Methods

Differential Equations

Differential Equations
  • • Euler Method
  • • Runge-Kutta Methods
  • • Finite Differences

Linear Systems

Linear Systems
  • • Gaussian Elimination
  • • LU Decomposition
  • • Iterative Methods