Mathematical Optimization

Finding the best solution among all feasible solutions

Optimization Fundamentals

Mathematical optimization is the selection of the best element from a set of available alternatives, playing a crucial role in machine learning, economics, and engineering.

Core Optimization Concepts

Unconstrained Optimization

Unconstrained Optimization
  • Gradient Descent
  • Newton's Method
  • Quasi-Newton Methods

Constrained Optimization

Constrained Optimization
  • Linear Programming
  • Lagrange Multipliers
  • KKT Conditions

Optimization with Python

import numpy as np
from scipy.optimize import minimize
import matplotlib.pyplot as plt

# Define objective function
def objective(x):
    return (x[0] - 1)**2 + (x[1] - 2)**2

# Define gradient
def gradient(x):
    return np.array([2*(x[0] - 1), 2*(x[1] - 2)])

# Initial guess
x0 = np.array([0, 0])

# Minimize using gradient descent
result = minimize(objective, x0, method='BFGS', jac=gradient)

# Visualization
x = np.linspace(-1, 3, 100)
y = np.linspace(-1, 4, 100)
X, Y = np.meshgrid(x, y)
Z = (X - 1)**2 + (Y - 2)**2

plt.figure(figsize=(10, 8))
plt.contour(X, Y, Z, levels=20)
plt.colorbar(label='Objective Value')
plt.plot(result.x[0], result.x[1], 'r*', markersize=15)
plt.xlabel('x')
plt.ylabel('y')
plt.title('Optimization Landscape')
plt.grid(True)
plt.show()

print("Optimal solution:", result.x)
print("Minimum value:", result.fun)

Advanced Optimization Methods

Convex Optimization

Convex Optimization
  • • Convex Functions
  • • Interior Point Methods
  • • Barrier Methods

Global Optimization

Global Optimization
  • • Genetic Algorithms
  • • Simulated Annealing
  • • Particle Swarm