Implementation Guide
Hands-on tutorials with PyTorch, TensorFlow, and scikit-learn
Popular ML Frameworks

PyTorch
Dynamic computational graphs and intuitive Python-first approach
- • Dynamic computation
- • Python-native feel
- • Research-friendly

TensorFlow
Production-ready ML framework with extensive ecosystem
- • Production-focused
- • Keras integration
- • TensorBoard support

scikit-learn
Simple and efficient tools for data analysis and modeling
- • Classical ML algorithms
- • Easy to use API
- • Great documentation
Implementation Examples
Neural Network in PyTorch
import torch
import torch.nn as nn
import torch.optim as optim
# Define the model
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.fc1 = nn.Linear(784, 128)
self.fc2 = nn.Linear(128, 10)
self.relu = nn.ReLU()
def forward(self, x):
x = self.relu(self.fc1(x))
x = self.fc2(x)
return x
# Create model and optimizer
model = Net()
optimizer = optim.Adam(model.parameters())
criterion = nn.CrossEntropyLoss()
# Training loop
for epoch in range(num_epochs):
for data, target in train_loader:
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
CNN in TensorFlow
import tensorflow as tf
from tensorflow.keras import layers, models
# Create the model
model = models.Sequential([
layers.Conv2D(32, (3, 3), activation='relu', input_shape=(28, 28, 1)),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.MaxPooling2D((2, 2)),
layers.Conv2D(64, (3, 3), activation='relu'),
layers.Flatten(),
layers.Dense(64, activation='relu'),
layers.Dense(10, activation='softmax')
])
# Compile the model
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
# Train the model
history = model.fit(train_images, train_labels,
epochs=10,
validation_data=(test_images, test_labels))
Best Practices
Code Organization
- • Modular code structure
- • Clear documentation
- • Version control
- • Unit testing
Performance Tips
- • Data preprocessing
- • Batch processing
- • GPU acceleration
- • Memory management