Descriptive Analytics

Understanding historical data through statistical analysis and visualization

What is Descriptive Analytics?

Descriptive analytics is the foundation of data analysis, focusing on summarizing historical data to derive meaningful insights. It answers the question "What happened?" through various statistical methods and visualizations.

Common Descriptive Metrics

Descriptive Metrics

Key Measures

  • Mean, Median, Mode
  • Standard Deviation
  • Variance
  • Percentiles
  • Range

Visualization Techniques

Distribution Plots

Distribution Plots

Histograms, box plots, and density plots help visualize data distributions

Relationship Plots

Relationship Plots

Scatter plots, correlation matrices, and pair plots show relationships between variables

Implementation Example

import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt

# Load and prepare data
df = pd.read_csv('sales_data.csv')

# Basic descriptive statistics
print(df.describe())

# Create visualizations
plt.figure(figsize=(12, 6))

# Distribution plot
sns.histplot(data=df, x='sales', kde=True)
plt.title('Sales Distribution')

# Box plot
plt.figure(figsize=(10, 6))
sns.boxplot(data=df, x='category', y='sales')
plt.title('Sales by Category')

# Correlation heatmap
plt.figure(figsize=(8, 8))
sns.heatmap(df.corr(), annot=True, cmap='coolwarm')
plt.title('Correlation Matrix')

plt.show()

Best Practices

Data Preparation

  • • Clean missing values
  • • Handle outliers appropriately
  • • Ensure data consistency
  • • Document assumptions

Visualization Tips

  • • Choose appropriate chart types
  • • Use clear labels and titles
  • • Consider color accessibility
  • • Include context and explanations

Recommended Tools

Python Libraries

  • • Pandas
  • • NumPy
  • • Matplotlib
  • • Seaborn

BI Tools

  • • Tableau
  • • Power BI
  • • Looker
  • • Qlik

Statistical Software

  • • R
  • • SPSS
  • • SAS
  • • Stata