Data Preprocessing

Transform raw data into a clean and analysis-ready format

The Importance of Data Preprocessing

Data preprocessing is a crucial step in the data analysis pipeline that involves transforming raw data into a clean and analysis-ready format. It includes handling missing values, removing duplicates, dealing with outliers, and feature engineering.

Preprocessing Pipeline

Data Preprocessing Pipeline

Data Collection

Gather raw data

Cleaning

Handle missing values

Transformation

Scale and encode

Feature Engineering

Create new features

Common Preprocessing Tasks

Data Cleaning

Data Cleaning
  • • Handle missing values
  • • Remove duplicates
  • • Fix inconsistencies
  • • Deal with outliers

Feature Engineering

Feature Engineering
  • • Create new features
  • • Transform variables
  • • Encode categories
  • • Scale numerical data

Implementation Example

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler, LabelEncoder
from sklearn.impute import SimpleImputer

# Load data
df = pd.read_csv('raw_data.csv')

# Handle missing values
imputer = SimpleImputer(strategy='mean')
df['numeric_column'] = imputer.fit_transform(df[['numeric_column']])

# Remove duplicates
df = df.drop_duplicates()

# Handle outliers
Q1 = df['numeric_column'].quantile(0.25)
Q3 = df['numeric_column'].quantile(0.75)
IQR = Q3 - Q1
df = df[~((df['numeric_column'] < (Q1 - 1.5 * IQR)) | 
          (df['numeric_column'] > (Q3 + 1.5 * IQR)))]

# Encode categorical variables
le = LabelEncoder()
df['category'] = le.fit_transform(df['category'])

# Scale numerical features
scaler = StandardScaler()
df['numeric_column'] = scaler.fit_transform(df[['numeric_column']])

# Feature engineering
df['new_feature'] = df['feature1'] / df['feature2']
df['date'] = pd.to_datetime(df['date'])
df['day_of_week'] = df['date'].dt.dayofweek

print("Preprocessing complete!")

Best Practices

Data Quality

  • • Document data sources
  • • Validate data types
  • • Check for anomalies
  • • Maintain data integrity

Process Efficiency

  • • Automate repetitive tasks
  • • Create reusable functions
  • • Monitor memory usage
  • • Version control datasets