Code Tutorials
Practical implementations and coding examples for Data Science
Quick Code Examples
Linear Regression Implementation
import numpy as np
from sklearn.linear_model import LinearRegression
# Create sample data
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([2, 4, 6, 8, 10])
# Create and train model
model = LinearRegression()
model.fit(X, y)
# Make predictions
predictions = model.predict([[6]])
Data Preprocessing with Pandas
import pandas as pd
# Load and clean data
df = pd.read_csv('data.csv')
df = df.dropna()
# Feature engineering
df['new_feature'] = df['column_a'] / df['column_b']
# Normalize data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df)
Learning Paths
Beginner Path
Start your journey with Python basics and data manipulation
- Python Fundamentals
- NumPy & Pandas
- Data Visualization
- Basic Statistics
Intermediate Path
Advance your skills with ML algorithms and deep learning
- Machine Learning Basics
- scikit-learn
- Neural Networks
- Model Evaluation
Advanced Path
Master complex algorithms and deployment
- Deep Learning
- Natural Language Processing
- Computer Vision
- Model Deployment
Tools & Resources
Jupyter Notebooks
Interactive computing and code documentation
GitHub Repository
Access all code examples and projects
Video Tutorials
Step-by-step video guides for each tutorial
Datasets
Curated datasets for practice and projects