Code Tutorials

Practical implementations and coding examples for Data Science

Quick Code Examples

Linear Regression Implementation

import numpy as np
from sklearn.linear_model import LinearRegression

# Create sample data
X = np.array([[1], [2], [3], [4], [5]])
y = np.array([2, 4, 6, 8, 10])

# Create and train model
model = LinearRegression()
model.fit(X, y)

# Make predictions
predictions = model.predict([[6]])

Data Preprocessing with Pandas

import pandas as pd

# Load and clean data
df = pd.read_csv('data.csv')
df = df.dropna()

# Feature engineering
df['new_feature'] = df['column_a'] / df['column_b']

# Normalize data
from sklearn.preprocessing import StandardScaler
scaler = StandardScaler()
df_scaled = scaler.fit_transform(df)

Learning Paths

Beginner Path

Start your journey with Python basics and data manipulation

  • Python Fundamentals
  • NumPy & Pandas
  • Data Visualization
  • Basic Statistics

Intermediate Path

Advance your skills with ML algorithms and deep learning

  • Machine Learning Basics
  • scikit-learn
  • Neural Networks
  • Model Evaluation

Advanced Path

Master complex algorithms and deployment

  • Deep Learning
  • Natural Language Processing
  • Computer Vision
  • Model Deployment

Tools & Resources

Jupyter Notebooks

Interactive computing and code documentation

GitHub Repository

Access all code examples and projects

Video Tutorials

Step-by-step video guides for each tutorial

Datasets

Curated datasets for practice and projects